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Abstract—The paper provides linear matrix inequality con-
ditions in mixed H2/H∞ control design for strictly Metzlerian
linear systems. The goal of this formulation is to design the state
controller guaranteing H∞ norm disturbance attenuation and
optimized H2 norm performance. The problem is formulated
multi-objective, respecting the constraints implying from H2 and
H∞ fulfillment, as well as from the parameter constraints defined
by the system matrix structures in the strictly Metzlerian system
description. The design character guaranties asymptotic stability
realized in a strictly Metzlerian closed-loop system form. It is
shown that enhanced design conditions span such a synthesis
framework for strictly Metzlerian linear system, where matrix
variables take diagonal form.

Index Terms—Metzlerian systems, state feedback stabilization,
linear matrix inequalities, asymptotic stability, H∞ norm, H2

norm attenuation.

I. INTRODUCTION

Unknown disturbance suppression, as well as input gain

attenuation, are very important topics in control theory and

so tasks formulating H2 and H∞ control are presented by

many authors (see, e.g., [7], [18], and references therein) In

real cases it is interpreted in that way that while H∞ control

design prespecifies frequency-domain performance, H2 control

attenuation precribes performance on transient behavior of a

system [19]. To state the H∞ norm disturbance suppression

problem together with optimization of the closed-loop system

H2 norm a mixed H2/H∞ control was formulated in [12].

Prioritizing these properties, the development of appropriate

control architectures, and associated controller design algo-

rithms, was reflected by a mixed H2/H∞ closed-loop perfor-

mance criterion [8], [9] or, more complex, by formulating

the LMI-based computational technique under the obvious

additional assumption that the plant is controllable. Some of

its results have been recast in more general frameworks [2],

[21]. However, these formalisms do not generally provide the

same computational power.

Positive system models are exploited in description of

industrial and engineering variables pointing out to strictly

positive quantities [6]. Restricting to Metzler structure of

system matrices when dealing with positive systems, and to

nonnegative input and output matrices, then, in abbreviated

terms, these systems are often denoted as Metzlerian sys-

tems. Consequently, well-tried linear techniques cannot be

straightly nominated to positive systems and new approaches

have to been derived. Stability and stabilization of Metzlerian

systems cover new methods reported [11], [25] and various

methods based on linear programming, or a combination

of linear programming with linear matrix inequalities, are

proposed for positive system stabilization (see, e.g. [1], [5],

[20], [24]). Most recently, a principle based purely on the

LMI formulation, and used to derive design conditions for

controllers and estimators with positive parameter constraints,

was presented in [13], [14], respectively, where more detailed

formulations and associated results can be found. Besides

specific meaningful control application [17], exploitation of

the latter principle for designing residual filters in the diagnosis

of positive linear systems can be found in [16].

Application of the LMI-based idea to control law parameter

setting for linear Metzlerian systems, and reflection by the

system structure given constraints, a mixed H2/H∞ design

strategy is outlined in the article. Main idea lies in adapting

the principle used in [15] to set out LMI design criterion

for solving problems in stabilization of linear Metzlerian

continuous-time systems. Hence, besides the computational

aspects induced by the matrix representation of parameter

constraints, the design conditions are formulated in the paper

using strictly sharp matrix inequalities, respecting diagonal

stabilization principle in control design of linear Metzlerian

systems [23].

The outline of this paper is as follows. Section II briefly

introduces basic fundamental properties of linear Metzlerian

systems and the principle of their stabilization. In Sec. III

there are H2 and H∞ principles reformulated to be suitable

for linear strictly Metzlerian systems and the design condition

for mixed H2/H∞ control of this group of systems is derived.

A numerical example demonstrates the results of this paper

in Sec. IV and Sec. V presents conclusions with a discussion

and summary.

Throughout the paper, the notations is narrowly standard in

such way that xT , XT denotes the transpose of the vector x

and matrix X , respectively, diag[ · ] denotes a block diagonal

matrix, for a square matrix X ≺ 0 means that X is a

symmetric negative definite matrix, the symbol In indicates

the n-th order unit matrix, T refers the permutation matrix,

‖·‖F provides the Frobenius matrix norm, and IRn
n, IRn×r

+

point to the set of all n-dimensional real non-negative vectors

and n× r real non-negative matrices.
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II. FUNDAMENTALS OF METZLERIAN SYSTEMS

To explain some properties, through this section there are

considered strictly linear Metzlerian systems in disturbance-

free regime in the state-space form

q̇(t) = Aq(t) +Bu(t) (1)

y(t) = Cq(t) (2)

where q(t) ∈ IRn
+, u(t) ∈ IRr

+, y(t) ∈ IRm
+ and A ∈ IRn×n,

B+ ∈ IRn×r, C+ ∈ IRm×n. The transfer function matrix to

(1), (2) is given in the standard way as

G(s) = C(sIn −A)−1B (3)

Although there are different definitions of Metzler’s square

matrix structure, specification by Definition 1 is preferred in

this paper. This structure results in the smallest number of

structural boundaries for the matrix elements, because any

further deviation from such defined structure leads to further

boundary which has to be added to analysis or synthesis [16].

Whilst non-negativity of matrices B ∈ IRn×r
+ , C ∈ IRm×n

+

means that all its entries are nonnegative and at least one is

positive, a Metzler square matrix is signum indefinite. Using

the following definition, the assignment A ∈ IRn×n
−+ can be

used highlighting negative diagonal elements and positive non-

diagonal elements of a Metzler matrix A.

Definition 1: [3] A square matrix A ∈ IRn×n
−+ is called

strictly Metzler matrix if all its diagonal elements are negative

and all its off-diagonal elements are positive. A Metzler matrix

is stable if it is Hurwitz.

Definition 2: (positive linear systems) System (1), (2) is said

to be positive if and only if for every nonnegative initial state

and nonnegative input its state and output are nonnegative.

Proposition 1: [6] A solution q(t) of (1) for t ≥ 0 is positive

and asymptotically stable if for non-negative B ∈ IRn×r
+ and

stable strictly Metzler A ∈ IRn×n
−+ then variable q(t) ∈ IRn

+

with applying u(t) ∈ IRr
+ and q(0) ∈ IR+. The linear system

(1), (2) is asymptotically stable and positive if A is strictly

Metzler and Hurwitz, B ∈ IRn×r
+ , C ∈ IRm×n

+ are non-

negative matrices and y(t) ∈ IRm
+ for all u(t) ∈ IRr

+ and

q(0) ∈ IR+.

An interesting case that has been widely studied corresponds

to the case in which the full state control input for Metzlerian

system (1), (2) is defined as

u(t) = −Kq(t) (4)

where K ∈ IRr×n
+ is positive (non-negative). Thus, it yields

q̇(t) = (A−BK)q(t) = Acq(t) (5)

y(t) = Cq(t) (6)

where Ac ∈ IRn×n
−+ is adjusted as

Ac = A−BK (7)

Note that controller has to stabilize the system with render-

ing that matrix Ac ∈ IRn×n
−+ is Metzler and Hurwitz.

The following theorem defines the LMI conditions to obtain

a stable, strictly Metzlerian closed-loop system. The results

reflect the diagonal stabilization principle in control design of

Metzlerian systems [23].

Theorem 1: [13] The closed-loop system (5), (6) is strictly

Metzlerian and stable if the system (1), (2) is strictly Met-

zlerian and there exist positive definite diagonal matrices

Q,Rk ∈ IRn×n such that for h = 1, 2, . . . n − 1 and

k = 1, 2 . . . , r,

Q = diag
[

v1 v2 · · · vn
]

≻ 0 (8)

Rk = diag
[

rk1 rk2 · · · rkn
]

≻ 0 (9)

A(i, i)(1↔n)/nQ−
r

∑

k=1

BdkRk ≺ 0 (10)

T hA(i, i+h)(1↔n)/nT
hTQ−

r
∑

k=1

T hBdkT
hTRk ≻ 0 (11)

AQ+QAT −
r

∑

k=1

(Bdkll
TRk +Rkll

TBdk) ≺ 0 (12)

where

lT =
[

1 · · · 1
]

T =











0 0 · · · 0 1
1 0 · · · 0 0

. . .

0 0 · · · 1 0











B =
[

b1 b2 · · · br
]

Bdk = diag
[

bk1 bk2 · · · bkn
]

A =







a11 · · · a1n
...

an1 · · · ann







A(j + h, j)(1↔n)/n =
= diag

[

a1+h,1 · · · an,n−h a1,n−h+1 · · · ah,n
]

(13)

while T−1 = T T .

With a feasible solution, the controller gain K ∈ IRr×n
+ that

solves the design task is

Kk = RkQ
−1, kT

k = lTKk, K =







kT
1
...

kT
r






(14)

⊓⊔
Such the design task formulation guarantees that matrix Ac

is Metzler and Hurwitz if the above given set of inequalities

is feasible that is, if

Ac =
[

{actl}nt, l=1

]

(15)

it yields

acll = all −
m
∑

k=1

blkkkl < 0, l,∈ 〈1, . . . , n〉 (16)

actl = atl −
m
∑

k=1

btkkkl > 0, t 6= l, t, l,∈ 〈1, . . . , n〉 (17)
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Quantification of effects of the input onto the output of a

linear system, related to the system transfer function G(s),
may be characterized through its H2 or H∞ norm.

Definition 3: [10], If A has no imaginary eigenvalues the

H∞ norm of (3) is

‖G(s)‖∞ = sup
ω∈IR

σ1(G(jω)) (18)

where the i-th singular value of the complex matrix G(jω)
is the nonnegative square-root of the i-th largest eigenvalue

of G∗(jω)G(jω), while the singular values σi(G(jω)) of the

transfer function matrix are evaluated on the imaginary axis

and it is assumed that the singular values are ordered such that

σi ≥ σi+1, i = 1, 2, · · · , n− 1.

Definition 4: [7] If A has no imaginary eigenvalues then

G(jω) is defined for all ω ∈ R, where ω is the frequency

variable, j=
√
−1, and the H2 norm of (3) is

‖G(s)‖2 =
√

1
2π

∫

∞

−∞
‖G(jω)‖2F dω =

=
√

1
2π

∫

∞

−∞
tr(G∗(jω)G(jω))dω

(19)

where G∗(jω) = GT (−jω) and ‖·‖F denotes the Frobenius

matrix norm.

To study the state trajectories of linear systems on infinite

time interval, the stability conditions related to Definition 3

and Definition 4 are associated.

Lemma 1: [22] A is Hurwitz and ‖G(s)‖∞ < γ∞ if there

exists a symmetric positive definite matrix P ∈ IRn×n and a

positive scalar γ∞ ∈ IR such that

P = P T ≻ 0 (20)







ATP + PA ∗ ∗

BTP −γ∞Ir ∗

C 0 −γ∞Im






≺ 0 (21)

Hereafter, ∗ denotes the symmetric item in a symmetric

matrix.

Lemma 2: [4] If A is Hurwitz and if exists a positive

definite square matrix Wc such that

AWc +WcA
T +BBT = 0 (22)

then

γ2
2 = tr(CWcC

T ) (23)

where γ2 ∈ IR+ is H2 norm of G(s) and Wc is the

controllability Gramian steady value.

The existence conditions such that ‖G(s)‖2, ‖G(s)‖∞
be as close to γ2, γ∞, are stated above in terms of the

given continuous time-invariant system (1), (2), where control

system properties are derived for linear controllable systems.

Since the principle of controllability can not be applied to

Metzlerian linear systems, structures defined in Lemma 1 and

Lemma 2 need to be adapted to the principle of diagonal

stability of Metzlerian systems.

III. H2 AND H∞ CONTROL OF METZLERIAN SYSTEMS

Given system (1), (2), its extended form with the bounded

unknown disturbance d(t) ∈ IR
n×p
+ is

q̇(t) = Aq(t) +Bu(t) +Ed(t) (24)

y(t) = Cq(t) (25)

where E ∈ IR
n×p
+ .

Considering state feedback control (4), where K ∈ IR r×n
+ ,

then under the control law action the linear formulation is

obtained

q̇(t) = Acq(t) +Ed(t) (26)

y(t) = Cq(t) (27)

where Ac is introduced in (7), while

Gc(s) = C(sIn −Ac)
−1B (28)

Gcd(s) = C(sIn −Ac)
−1E (29)

The objectives under following consideration include H2

and H∞ performances. Principally, other additional constraints

on the closed-loop properties can be imposed [15].

Theorem 2: (H2 control of strictly Metzlerian systems) The

control (4) to system (24), (25) exists if for given positive

scalar η ∈ IR+ there exist positive definite diagonal matrices

V ,Rk ∈ IRn×n, H ∈ IRm×m such that for h=1, 2, . . . n−1,

k = 1, 2 . . . , r,

H = diag
[

h1 h2 · · · hm

]

≻ 0 (30)

V = diag
[

v1 v2 · · · vn
]

≻ 0 (31)

Rk = diag
[

rk1 rk2 · · · rkn
]

≻ 0 (32)

A(i, i)(1↔n)/nV −
r

∑

k=1

BdkRk ≺ 0 (33)

T hA(i, i+h)(1↔n)/nT
hTV −

r
∑

k=1

T hBdkT
hTRk ≻ 0 (34)





AV +VAT −
r
∑

k=1

(Bdkll
TRk+Rkll

TBdk) ∗

BT −Ir



 ≺ 0

(35)
[

V V CT

CV H

]

≻ 0 (36)

lTH◦l− η < 0 (37)

with the structural matric variable

H◦ = diag
[

H 0
]

� 0 (38)

H◦ ∈ IRn×n
+ and the design parameters are from (13).

With a feasible solution, the controller gain K ∈ IRr×n
+ that

solves the design task is

Kk = RkV
−1, kT

k = lTKk, K =







kT
1
...

kT
r






(39)

where K ∈ IRr×n
+ . ⊓⊔
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Proof: Constructing Lyapunov function and evaluating its

derivative function to parse system stability in the following

form

v(q(t)) = qT (t)Pq(t) > 0 (40)

v̇(q(t)) = q̇T (t)Pq(t) + qT (t)P q̇(t) < 0 (41)

where P ∈ IRn×n is a positive definite diagonal matrix, then,

with respect to autonomous part of (24),

v̇(q(t)) = qT (t)(ATP + PA)q(t) < 0 (42)

Inequality (42) admits a stable solution with a Hurwitz matrix

A if

ATP + PA ≺ 0 (43)

AV + V AT ≺ 0 (44)

where V = P−1. Defining the matrix

V o = W cA+ATW c (45)

and subtracting (45) from (43) then

V oo = (V −W c)A+AT (V −W c) (46)

and V oo be negative definite if A is Hurwitz and

V ≻ W c (47)

Since V ≻ W c for any W c satisfying (22) implies

AV + V AT +BBT ≺ 0 (48)

and it can easily see that guaranteing (48) it is also satisfied
[

AV + V AT B

BT −Ir

]

≺ 0 (49)

Thus, replacing A in (49) by (7) modifies this LMI as
[

(A−BK)V + V (A−BK)T B

BT −Ir

]

≺ 0 (50)

and, using (37), it can be set

(A−BK)V = AV −BR = AV −
r

∑

k=1

bkr
T
k (51)

while

R = KV , BR =

r
∑

k=1

bkr
T
k =

r
∑

k=1

Bdkll
TRdk (52)

Since instead of the inequality (12), a generalized Lyapunov

matrix inequality also ensures stability of a controlled Metzle-

rian system [13], with (51), (52) then (50) immediately implies

the inequality (36).

Equality (23) and inequality (47) result in

tr(CV CT ) > tr(CW cC
T ) = γ2

2 (53)

and using the change of variable

H ≻ CV CT = CV V −1V CT (54)

tr(H) = tr(H◦) = lTH◦l < η (55)

with H ∈ IRm×m being diagonal positive definite, then (54),

(55) imply (36), (37). This concludes the proof.

Theorem 3: (H∞ control of strictly Metzlerian systems)

The feedback control (4) to the system (24), (25) exists and

‖Gcd(s)‖∞ < γ∞ if there exist positive definite diagonal

matrices Q,Rk ∈ IRn×n
+ and a positive scalar γ∞ ∈ IR+

such that for h = 1, 2, . . . n− 1, k = 1, 2 . . . , r,

γ∞ > 0 (56)

Q = diag
[

v1 v2 · · · vn
]

≻ 0 (57)

Rk = diag
[

rk1 rk2 · · · rkn
]

≻ 0 (58)

A(i, i)(1↔n)/nQ−
r

∑

k=1

BdkRk ≺ 0 (59)

T hA(i, i+h)(1↔n)/nT
hTQ−

r
∑

k=1

T hBdkT
hTRk ≻ 0 (60)









AQ+QAT−
r
∑

k=1

(Bdkll
TRk+Rkll

TBdk) ∗ ∗

ET −γ∞Ip ∗

CQ 0 −γ∞Im









≺0

(61)

where (13) stipulates design parameter structure.

When the above conditions hold, the control gain matrix

K ∈ IRr×n
+ is given by (14).

Proof: Reformulating (21) with E and Ip and defining

matrix T with only block diagonal nonzero entries such that

T = blockdiag
[

Q Ip Im

]

, Q = P−1 (62)

then, pre-multiplying the left side and post-multiplying the

ride side by T , the inequality (21) reformulated in this way

originates the result






AQ+QAT
∗ ∗

ET −γ∞Ip ∗

CQ 0 −γ∞Im






< 0 (63)

This allows to obtain a modified condition expressed in terms

of LMI by reflecting (7)






(A−BK)Q+Q(A−BK)T ∗ ∗

ET −γ∞Ip ∗

CQ 0 −γ∞Im






< 0

(64)

Referring to closed-loop system matrix by notations

(A−BK)Q = AQ−BR = AQ−
r

∑

k=1

bkr
T
k (65)

R = KQ, BR =
r

∑

k=1

bkr
T
k =

r
∑

k=1

Bdkll
TRdk (66)

the linear matrix inequality (64) implies (61), where instead

of the inequality (12), bounded real lemma form (61) is used

in design. This concludes the proof.

Putting the above presented standard algorithms in the

common design context, an enhanced H2/H∞ design principle

for linear strictly Metzlerian systems, reflecting H2 and H∞

norms, makes use of the mixed approach.
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Theorem 4: (mixed H2/H∞ control of strictly Metzlerian

systems) The state feedback control (4) to the system (24), (25)

exists and ‖Gdd(s)‖∞ < γ∞ if for given positive scalar η ∈
IR+ there exist positive definite diagonal matrices Q,Rk ∈
IRn×n

+ , a positive definite diagonal matrix H ∈ IRm×m and

a positive scalar γ∞ ∈ IR such that for h = 1, 2, . . . n − 1,

k = 1, 2 . . . , r,
γ∞ > 0 (67)

H = diag
[

h1 h2 · · · hm

]

≻ 0 (68)

Q = diag
[

v1 v2 · · · vn
]

≻ 0 (69)

Rk = diag
[

rk1 rk2 · · · rkn
]

≻ 0 (70)

A(i, i)(1↔n)/nQ−
r

∑

k=1

BdkRk ≺ 0 (71)

T hA(i, i+h)(1↔n)/nT
hTQ−

r
∑

k=1

T hBdkT
hTRk ≻ 0 (72)









AQ+QAT−
r
∑

k=1

(Bdkll
TRk+Rkll

TBdk) ∗ ∗

ET −γ∞Ip ∗

CQ 0 −γ∞Im









≺0

(73)




AQ+QAT −
r
∑

k=1

(Bdkll
TRk+Rkll

TBdk) ∗

BT −Ir



 ≺ 0

(74)
[

V V CT

CV H

]

≻ 0 (75)

η − lTH◦l > 0, H◦ = diag
[

H 0
]

(76)

where (13) stipulates design parameter structure.

When the above conditions hold, a controller gain K ∈
IRr×n

+ that solves the design task is given by (14).

Proof: The proof easily follows considering that V = Q.

Then (30)-(37) and (56)-(61) implies (67)-(76). This concludes

the proof.

Note, the mixed H2/H∞ allows to minimize H∞ norm

constraint, while H2 norm does’nt exceed η when is optimized

over a state-feedback gain K.

IV. ILLUSTRATIVE EXAMPLE

To illustrate design strategy, system (24), (25) is considered

with the matrix parameters [13]

A =









−3.3800 0.2080 6.7150 5.6760
0.5810 −4.2900 2.0500 0.6750
1.0670 4.2730 −6.6540 5.8930
0.0480 2.2730 1.3430 −2.1040









B =









0.0400 0.0189
0.0568 0.0203
0.0114 0.0315
0.0114 0.0170









, E =









0.0140
0.0150
0.0223
0.0061









, CT=









0 0
1 0
0 0
0 1









It is easy to verify that the matrix A is not Hurwitz since

ρ(A) =
{

1.9761, −9.4392, −4.4824± 1.2499 i
}

.

Through the design task, the auxiliary parameters are

T =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









, l =









1
1
1
1









A(i, i)(1↔4)/4= −diag
[

3.3800 4.2900 6.6540 2.1040
]

A(i, i+ 1)(1↔4)/4 =diag
[

0.2080 2.0500 5.8930 0.0480
]

A(i, i+ 2)(1↔4)/4 =diag
[

6.7150 0.6750 1.0670 2.2730
]

A(i, i+ 3)(1↔4)/4 =diag
[

5.6760 0.5810 4.2730 1.3430
]

Bd1 = diag
[

0.0400 0.0568 0.0114 0.0114
]

Bd2 = diag
[

0.0189 0.0203 0.0315 0.0170
]

Prescribing η = 0.75 then the conditions (67)–(76) are

satisfied if LMI matrix variables are

H = diag
[

0.2863 0.2849
]

, γ∞ = 0.6665

Q = diag
[

0.3985 0.0406 0.0904 0.0370
]

R1 = diag
[

0.8202 0.0594 1.7990 0.0348
]

R2 = diag
[

0.3348 0.2106 3.4578 0.9646
]

These results enforce the following strictly positive control

gain matrix

K =

[

2.0581 1.4613 19.9059 0.9418
0.8400 5.1850 38.2616 26.0717

]

and

Ac =









−3.4782 0.0517 5.1964 5.1461
0.4471 −4.4782 0.1428 0.0923
1.0172 4.0933 −8.0838 5.0621
0.0103 2.1682 0.4660 −2.5582









ρ(Ac) =
{

−0.4990 −9.1615 −4.4689± 1.2388 i
}

that is, the matrix Ac is strictly Metzler and Hurwitz.

Moreover, it can verify that obtained γ∞ > 0.0120, whilst

γ = 0.0120 is the real H∞ norm of Gcd(s) and the constraint

tr(H) = 0.5712 > tr(CQCT ) = 0.0776, when tr(H) < η =
0.75, which reflects improving of the control performances.

Figure 1 and Fig. 2 show the evolution of the system state

and output over time. It is evident that the vector q(t) as well

as the output vector y(t) are positive when the input is

u(t) = −Kq(t) +Ww(t)

Using the static decoupling principle, signal gain matrix W ,

system non-negative initial state q(0) and positive vector w

are given as

W = diag

[

158.1888 −94.6102
−230.2012 167.2121

]

, w =

[

2
1

]

q(0) =
[

0 0 1.8 0.5
]T

Since the control is based on the diagonal stabilization of

linear Metzler systems, the above mentioned principle can

only be used if the output matrix (CQCT ) is a diagonal
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Fig. 1: Corresponding state of the controlled system
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Fig. 2: Corresponding output of the controlled system

matrix (each row of a matrix C can contain no more than

one non-zero element). Since even in this case W is generally

signum-indefinite, to make the system output non-negative it is

necessary to set a suitable non-negative vector of the scheme

initial state.

V. CONCLUDING REMARKS

The presented approach shows that an optimized disturbance

attenuation for systems with linear strictly Metzlerian model

is solvable, although control synthesis for this group of system

is based on the diagonal stabilization. To accomplish that

the closed-loop system Metzler matrix be Hurwitz and the

control gain be a positive matrix, the design conditions are

linked to positive definite diagonal matrix variables. Novelty

is made in the design conditions characterizing continuous-

time stability, disturbance attenuations and H2 objective to

be directly applicable to strictly Metzlerian linear continuous-

time systems. Fully formulated by means of LMIs, it is

interesting to note that the proposed algorithm differs from

those exploiting linear programming. Simulations are carried

out to evaluate the performance of the proposed scheme.
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